
Curtin University — Department of Computing

UNIX and C Programming (COMP1000)

Mock Test 2B
Practice for Test 2

Real test weight: 15% of the unit mark.

Attempt this mock test in preparation for Test 2. Answer all questions by yourself.

Will the real test be like this?

The real test will follow approximately the same format and will cover the same
material. However, the questions will be different (so trying to memorise answers
will get you nowhere!) The real test will also be closed book – no books, notes,
electronic devices, etc.

How can I get help/feedback?

First, make your best attempt. Then, to obtain feedback, see your tutor, or the senior
tutor, or the lecturer.

Will you upload the answers?

No. Sample answers to this mock test will not be provided – no exceptions.

Why?

Sample answers discourage people from putting in real effort to learn the concepts and
skills. They encourage rote (fake) learning, where you try to memorise an answer
without understanding how to obtain it or even why it’s correct.

Basically, if you’re given the answers, it’s too easy to convince yourself that you don’t
need to work them out.

Updated: 6th October, 2015

Page 1 of 7

UCP Mock Test 2B

Question 1

For each of the following descriptions:

(i) Write a suitable type declaration (or set of type declarations) for representing
the data.

(ii) Show how to dynamically allocate the necessary memory, and initialise any
obvious fields.

(Note: based on your declarations, it should be possible to use and manipulate all the
information through a single pointer variable.)

(a) A book, with a title, author and year of publication.

(b) A digital image. The image has a filename of unlimited length, and a two-
dimensional grid of pixels. The image can have any (positive) width and height.
Each pixel has a single colour, made up of three components — red, green and
blue. Each of these is an integer.

When allocating/initialising the structure, assume there are pre-existing integer
variables w and h containing the required width and height of the image, and
nameLen contains the length of the name.

(c) A list of sporting matches, where each match records the names of two com-
peting teams and their integer scores. All matches are played in the same year,
and this year should also be recorded. There are no limits on the number of
matches, or on the length of team names. By pure chance, all team names are 10
characters long.

Question 2 appears on the next page

Page 2 of 7

UCP Mock Test 2B

Question 2

Consider each of the following code snippets:

(i)

int *a, *b, **c, **d, j;

c = (int**)malloc(3 * sizeof(int*));

c[0] = (int*)malloc(5 * sizeof(int));

c[1] = *c + 1;

c[2] = *(c + 1) + 2;

a = &c[0][0];
b = c[0] + 3;

d = &b;
*(c + 2) = *d;

for(j = 0; j < 3; j++)
{

c[j][0] = j;
c[j][1] = 2 * j;

}

*a = (*d)[0] + b[a[1]];

(ii)

int **a, **b, j;

a = (int**)malloc(3 * sizeof(int*));

b = (int**)malloc(sizeof(int*));
a = (int)malloc(3 * sizeof(int));

(a + 1) = (int)malloc(4 * sizeof(int));

a[2] = a[1] + 2;

b[0] = &a[1][1];
a[0] = *a + 1;

for(j = 0; j < 3; j++)
{

*(a[j]) = j;
a[j][1] = 2 * j;

}

(**b)++;
b[0][2]++;

(a) For (i) and (ii), draw separate diagrams showing the arrays and all the pointer
relationships created.

(b) For both (i) and (ii), show all int values at the end, except j. Indicate any that
are left uninitialised.

Question 3 appears on the next page

Page 3 of 7

UCP Mock Test 2B

Question 3

For this question, refer to the following declaration:

#define WIDTH 20

#define HEIGHT 30

typedef struct {

double s;
double t;

} Pair;

(a) Write a C function (not a whole program) called processPairs(). The function
should:

• Import a fixed-size 2D array of Pairs, with HEIGHT rows and WIDTH columns.
• Calculate the sum (addition) of all the s fields.
• Calculate the product (multiplication) of all the t fields.
• Return nothing, but export the sum and product using another (single) Pair

parameter, passed by reference.

(b) Write a C function (not a whole program) called min2D(). The function should:

• Import a fixed-size 2D array of real numbers, with HEIGHT rows and WIDTH
columns (where HEIGHT and WIDTH are preprocessor constants).

• Also import a fixed-size 1D array of real numbers, with HEIGHT elements.
• For each row in the 2D array, determine the minimum value.
• Export the minimum values using the 1D array.
• Return nothing.

Question 4 appears on the next page

Page 4 of 7

UCP Mock Test 2B

Question 4

Refer to the following standard C function prototypes (you may not need all of them):

FILE *fopen(char *path, char *mode);
int fclose(FILE *fp);
int fscanf(FILE *stream, char *format, ...);

char *fgets(char *s, int size, FILE *stream);
int fgetc(FILE *stream);
int ferror(FILE *stream);
size_t strlen(const char *s);

Also refer to the following declaration:

typedef struct {

char search;
char *text;

} Set;

(a) Write a function called readFile() to:

• Import a filename as a parameter.

• Read the contents of the file into a dynamically-allocated array of Set
structs. The file is formatted as follows:

– The first line contains two integers: the number of subsequent lines,
and the maximum text length (see below). These values have no fixed
limits.

– Each subsequent line consists of a single non-space character, followed
by a space, followed by one or more characters of free-form text. The
length of the free-form text will be, at most, the maximum given on the
first line.

For example:

4 8

x abc

e elephant

3 1a2b3c

% !@ #$%

• Return the array of Sets, and export the array length via a parameter passed
by reference.

• If an error occurs, return NULL instead; no error message is needed. You
may assume that, if the file exists, it can definitely be read and will be in
the correct format.

Question 4 continues on the next page

Page 5 of 7

UCP Mock Test 2B

(b) Write a function called countChars() to:

• Import an array of Set structs, and the array length; and return nothing.

• For each Set:

– Count the number of occurrences of the search character within the
word string. (Count exact matches only. Uppercase and lowercase let-
ters are different.)

– Calculate the proportion (i.e. a real number between 0 and 1) of the
characters in word that match search.

– Output the count and proportion on a single line, separated by a space.
The proportion should be expressed with 3 decimal places.

For example:

0 0.000

2 0.250

1 0.167

1 0.143

(This is the expected output given the example input file shown previously.)

• Return nothing.

(c) Write a main() function to:

• Take one or more filenames on the command-line.

• For each filename, read the file with readFile() and, as appropriate, count
matching characters with countChars().

• Clean up any allocated memory.

• Output any appropriate error messages.

Question 5 appears on the next page

Page 6 of 7

UCP Mock Test 2B

Question 5

(a) Given the following declarations, write a function called listAvg() to determine
the mean of all real-numbers stored in the list.

#define ARRAYSIZE 30

typedef struct Part {

struct Part *next;
double array[ARRAYSIZE];

} Part;

typedef struct {

Part *first;
} List;

Your function should take a single pointer to List and return a double. There
should be no input or output. If the list is empty, your function should return
zero. Assume the list has already been populated (i.e. filled-in/initialised).

(b) Consider the following declarations:

typedef struct Node {

struct Node *next;
char *text;

} Node;

typedef struct {

Node *start;
Node *end;

} List;

Write a function called listCase() to determine (1) the total number of low-
ercase characters, and (2) the total number of uppercase characters in the text
stored in the list. Do not break this down per node; rather, count all lowercase
and uppercase characters across all nodes.

Your function should return nothing, and take three parameters:

• A pointer to List.
• Two pointers to integers, called lower and upper, to export the results.

There should be no input or output, and your function should not modify the
list.

End of Mock Test 2B

Page 7 of 7

