
UCP 152/500 Semester 2, 2012

Curtin University — Department of Computing

UNIX and C Programming 120 / 500
(Index 10163 / 10225)

Semester 2, 2012

Mock Test 2

Instructions

You should attempt this mock test by yourself under test conditions. Answers will not be
provided unless you’ve made a realistic attempt yourself.

Note: the real test will be closed book, and you will be given 90 minutes.

Page 1 of 7

UCP 152/500 Semester 2, 2012

Question 1

For each of the following descriptions:

(i) Write a suitable type declaration (or set of type declarations) for representing the data.

(ii) Show how to dynamically allocate the necessary memory, and initialise any obvious
fields.

Assume that all strings have an upper limit of 139 characters.

(Note: based on your declarations, it should be possible to use and manipulate all the informa-
tion through a single pointer variable.)

(a) A planet, consisting of a name, number of moons, and distance from the sun in kilometres.

(b) A book, with a title, author and year of publication.

(c) A set of instructions for finding buried treasure and the value of the treasure. Each in-
struction consists of a direction (north, south, east or west) and a distance in metres to
travel.

Assume that there is a pre-existing variable num that indicates how many instructions
there will be.

(d) A recipe, consisting of a name and a collection of ingredients. Each ingredient itself has a
name and an amount in kilograms (a real number). There is no upper limit on the number
of ingredients, but you can assume the required number has previously been determined
and stored in the int variable ingreds.

Question 2 appears on the next page

Page 2 of 7

UCP 152/500 Semester 2, 2012

Question 2

Consider each of the following code snippets:

(i)
int a[] = {3, 6, 9};
int b[] = {2, 4, 6, 8, 10};
int **c;
int **d[2];

c = (int**)malloc(
b[1] * sizeof(int*));

*c = &a[1];
c[1] = c[0] + 1;

*d = c;
c = c + 2;

*c = b;
c[1] = &c[0][3];

*(d + 1) = c;

d[0][3][1] = d[1][0][0];
d[1][0][2] = d[0][1][0];

(ii)
int a[] = {80, 70, 60, 50, 40,

30, 20, 10, 0};
int *b[] = {a + 6, &a[8]};
int **x;
int **y;
int **z;

x = (int**)malloc(
3 * sizeof(int*));

y = x + 2;
z = b;

*x = a;
x[1] = x[0] + 2;

*y = x[0] + x[0][4] / 10;

*(z[1]) = (*x)[1];
y[0][1] = z[0][1];

(a) For (i) and (ii), draw separate diagrams showing the arrays and all the pointer relationships
created.

(b) For (i), show the final contents of a and b at the end. For (ii), show the final contents of
a.

Question 3 appears on the next page

Page 3 of 7

UCP 152/500 Semester 2, 2012

Question 3

(a) Write a C function (not a whole program) to determine the product of all the element of a
3D (three-dimensional) malloc’d array. That is, it should return result obtained when all
the array elements are multiplied together.

The function should take in four parameters — the array itself and the sizes of its three
dimensions. The function should return a double.

(Note: your function should not try to create the array; merely import it as a parameter.)

(b) Write a C function (not a whole program) called sumDiff. The function should take
two 2D arrays of ints called a and b. Both arrays are fixed-size (not malloc’d), and both
have the same size.

Assume the following pre-defined constants represent the number of rows and columns
in each:

#define ROWS 15
#define COLS 15

Your function should:

• Add each original element of b to the corresponding original element (at the same
row and column) of a, storing the result in a.

• Subtract each original element of b from the corresponding original element of a,
storing the result in b.

That is, after the function runs, a should contain the sum of the original arrays (element-
by-element), while b should contain the difference. The function should not return any
value.

Question 4 appears on the next page

Page 4 of 7

UCP 152/500 Semester 2, 2012

Question 4

For this question, you will need the following declaration:

typedef struct {
double x;
double y;

} Point;

(a) Write a function called readPoints to:

• Import a filename as a char pointer — an input file, structured as follows:

– The first line contains a single integer, representing the number of subsequent
lines.

– Each subsequent line contains two real numbers separated by a comma. Each
pair of numbers represent x and y co-ordinates; i.e. a point in two dimensions.

For example:

4
2.35,6.14
5.5,7.0
0.0,-55.9
14084.1,39864.6

• Take a second parameter — the number of points/records, passed by reference. The
readPoints function should set this value itself.

• Read the contents of the file into a dynamically-allocated array of Point structs.

• Return the new array, or NULL if the file could not be opened.

(b) Write a function called calc to:

• Import an array of the type returned by readPoints, along with the number of
points.

• Perform the following calculation. For each point, the x and y values are multiplied.
These individual products are then summed.

Given the previous example file, the calculation would be as follows:

(2.35× 6.14) + (5.5× 7.0) + (0.0×−55.9) + (14084.1× 39864.6)

• Return the result (a real number).

Question 4 continues on the next page

Page 5 of 7

UCP 152/500 Semester 2, 2012

(c) Write a main function to:

• Take any number of command-line parameters, representing input files.

• For each filename:

– Call readPoints, then when appropriate call calc;
– Print out the final result with 4 decimal places and a field width of 12;
– De-allocate the array.

(No action needs to be performed if no parameters are given.)

Question 5 appears on the next page

Page 6 of 7

UCP 152/500 Semester 2, 2012

Question 5

(a) Given the following declarations, write a single function to print out every third value in
the list, starting with the first element. That is, the function should print the 1st, 4th, 7th,
etc. elements until the end of the list.

Your function should take one LinkedList pointer parameter, and return nothing. As-
sume the list has already been populated (i.e. filled-in/initialised), and all relevant structs
are declared as follows:

typedef struct LinkedListNode {
int value;
struct LinkedListNode *next;

} LinkedListNode;

typedef struct {
LinkedListNode *head;

} LinkedList;

Note: the list length is not necessarily divisible by 3.

(b) Given the following declarations, write a single function to print out each name in the list,
but only where:

• The name starts with a capital letter; and
• The age is at least 18.

Your function should take a single pointer to List and return nothing. Assume the list
has already been populated (i.e. filled-in/initialised), and all relevant structs are declared
as follows:

typedef struct {
char name[20];
int age;

} Person;

typedef struct Node {
struct Node *next;
Person *p;

} Node;

typedef struct {
Node *head;

} List;

—— End of Mock Test 2 ——

Page 7 of 7

