
Curtin University — Department of Computing

UNIX and C Programming (COMP1000)

Mock Test 2A
Practice for Test 2

Real test weight: 15% of the unit mark.

Attempt this mock test in preparation for Test 2. Answer all questions by yourself.

Will the real test be like this?

The real test will follow approximately the same format and will cover the same
material. However, the questions will be different (so trying to memorise answers
will get you nowhere!) The real test will also be closed book – no books, notes,
electronic devices, etc.

How can I get help/feedback?

First, make your best attempt. Then, to obtain feedback, see your tutor, or the senior
tutor, or the lecturer.

Will you upload the answers?

No. Sample answers to this mock test will not be provided – no exceptions.

Why?

Sample answers discourage people from putting in real effort to learn the concepts and
skills. They encourage rote (fake) learning, where you try to memorise an answer
without understanding how to obtain it or even why it’s correct.

Basically, if you’re given the answers, it’s too easy to convince yourself that you don’t
need to work them out.

Updated: 6th October, 2015

Page 1 of 7

UCP Mock Test 2A

Question 1

For each of the following descriptions:

(i) Write a suitable type declaration (or set of type declarations) for representing
the data.

(ii) Show how to dynamically allocate the necessary memory, and initialise any
obvious fields.

Assume that all strings have an upper limit of 139 characters.

(Note: based on your declarations, it should be possible to use and manipulate all the
information through a single pointer variable.)

(a) A planet, consisting of a name, number of moons, and distance from the sun in
kilometres.

(b) A set of instructions for finding buried treasure and the value of the treasure.
Each instruction consists of a direction (north, south, east or west) and a distance
in metres to travel.

Assume that there is a pre-existing variable num that indicates how many in-
structions there will be.

(c) A recipe, consisting of a name and a collection of ingredients. Each ingredient
itself has a name and an amount in kilograms (a real number). There is no upper
limit on the number of ingredients, but you can assume the required number has
previously been determined and stored in the int variable ingreds.

Question 2 appears on the next page

Page 2 of 7

UCP Mock Test 2A

Question 2

Consider each of the following code snippets:

(i)

int a[] = {3, 6, 9};

int b[] = {2, 4, 6, 8, 10};

int **c;
int **d[2];

c = (int**)malloc(b[1] * sizeof(int*));

*c = &a[1];
c[1] = c[0] + 1;

*d = c;
c = c + 2;

*c = b;
c[1] = &c[0][3];
*(d + 1) = c;

d[0][3][1] = d[1][0][0];
d[1][0][2] = d[0][1][0];

(ii)

int a[] = {80, 70, 60, 50, 40,

30, 20, 10, 0};

int *b[] = {a + 6, &a[8]};
int **x;
int **y;
int **z;

x = (int**)malloc(3 * sizeof(int*));

y = x + 2;

z = b;

*x = a;
x[1] = x[0] + 2;

*y = x[0] + x[0][4] / 10;

*(z[1]) = (*x)[1];
y[0][1] = z[0][1];

(a) For (i) and (ii), draw separate diagrams showing the arrays and all the pointer
relationships created.

(b) For (i), show the final contents of a and b at the end. For (ii), show the final
contents of a.

Question 3 appears on the next page

Page 3 of 7

UCP Mock Test 2A

Question 3

(a) Write a C function (not a whole program) to determine the product of all the
elements of a 3D (three-dimensional) malloc’d array. That is, it should return
result obtained when all the array elements are multiplied together.

The function should take in four parameters — the array itself and the sizes of
its three dimensions. The function should return a double.

(Note: your function should not try to create the array; merely import it as a
parameter.)

(b) Write a C function (not a whole program) called sumDiff(). The function should
take two parameters, a and b, with each being a 2D arrays of ints.

Both arrays have a fixed size, with the number of rows and columns defined by
the following constants:

#define ROWS 15

#define COLS 15

Your function should:

• Add each original element of b to the corresponding original element (at
the same row and column) of a, storing the result in a.

• Subtract each original element of b from the corresponding original element
of a, storing the result in b.

That is, after the function runs, a should contain the sum of the original ar-
rays (element-by-element), while b should contain the difference. The function
should not return any value.

Question 4 appears on the next page

Page 4 of 7

UCP Mock Test 2A

Question 4

Refer to the following standard C function prototypes (you may not need all of them):

FILE *fopen(char *path, char *mode);
int fclose(FILE *fp);
int fscanf(FILE *stream, char *format, ...);

char *fgets(char *s, int size, FILE *stream);
int fgetc(FILE *stream);
int ferror(FILE *stream);
size_t strlen(const char *s);

Also refer to the following declaration:

typedef struct {

double x;
double y;

} Point;

(a) Write a function called readPoints to:

• Import a filename as a char pointer — an input file, structured as follows:

– The first line contains a single integer, representing the number of sub-
sequent lines.

– Each subsequent line contains two real numbers separated by a comma.
Each pair of numbers represent x and y co-ordinates; i.e. a point in two
dimensions.

For example:

4

2.35,6.14

5.5,7.0

0.0,-55.9

14084.1,39864.6

• Take a second parameter — the number of points/records, passed by refer-
ence. The readPoints function should set this value itself.

• Read the contents of the file into a dynamically-allocated array of Point
structs.

• Return the new array, or NULL if the file could not be opened.

Question 4 continues on the next page

Page 5 of 7

UCP Mock Test 2A

(b) Write a function called calc() to:

• Import an array of the type returned by readPoints, along with the number
of points.

• Perform the following calculation. For each point, the x and y values are
multiplied. These individual products are then summed.

Given the previous example file, the calculation would be as follows:

(2.35 × 6.14) + (5.5 × 7.0) + (0.0 ×−55.9) + (14084.1 × 39864.6)

• Return the result (a real number).

(c) Write a main() function to:

• Take any number of command-line parameters, representing input files.

• For each filename:

– Call readPoints(), then when appropriate call calc();
– Print out the final result with 4 decimal places and a field width of 12;
– De-allocate the array.

(No action needs to be performed if no parameters are given.)

Question 5 appears on the next page

Page 6 of 7

UCP Mock Test 2A

Question 5

(a) Given the following declarations, write a single function to print out every third
value in the list, starting with the first element. That is, the function should print
the 1st, 4th, 7th, etc. elements until the end of the list.

Your function should take one LinkedList pointer parameter, and return noth-
ing. Assume the list has already been populated (i.e. filled-in/initialised), and
all relevant structs are declared as follows:

typedef struct LinkedListNode {

int value;
struct LinkedListNode* next;

} LinkedListNode;

typedef struct {

LinkedListNode* head;
} LinkedList;

Note: the list length is not necessarily divisible by 3.

(b) Given the following declarations, write a single function to print out each name
in the list, but only where:

• The name starts with a capital letter; and
• The age is at least 18.

Your function should take a single pointer to List and return nothing. Assume
the list has already been populated (i.e. filled-in/initialised), and all relevant
structs are declared as follows:

typedef struct {

char name[20];
int age;

} Person;

typedef struct Node {

struct Node* next;
Person* p;

} Node;

typedef struct {

Node *head;
} List;

End of Mock Test 2A

Page 7 of 7

