
)0

�@�r;�itrtlli1liversity ?,;'
::"'4"'"0:i-.t:?3 w:::�'*"'Pt�w �"' "'""""�'¢:"' �

Department of Computing
End of Semester 2 Central Examinations - November 2013

Attendance Mode:

Centre(s):

Unit(s):

Duration:

Total Marks:

Internal

Bentley Campus

10163 - Unix and C Programming 120

2 Hours

100

Prior to commencement of the examination there will
be a 10-minute reading period. During this period
notes may be written in margins or reverse of the
examination paper. Commencement of the
examination will be indicated by the supervisor.

Calculator: No, not allowed

Supplied by the University:

1 x 16 page answer book

Supplied by the Student:

None

THIS IS A CLOSED BOOK EXAMINATION

IMPORTANT INFORMATION

- The possession or use of:

Mobile phones or any other device capable of communicating information, are prohibited during examinations.

Electronic Organisers/PDAs (with the exception of calculators) or other similar devices capable of storing text or
restricted information are prohibited during examinations.

Any breach of examination regulations will be considered cheating and appropriate action will be taken in
accordance with University policy.

Other Information:

The exam consists of FIVE (5) questions.
ANSWER ALL QUESTIONS.
The marks allocated for each question are shown beside the question.

Examination paper is to be released to student

Page 1 of 7

UCP 120 Semester 2, 2013

Question 1 (11 marks)

Each of the following descriptions represents a datatype. For each one, using C code:

(i) Declare the datatype.

(ii) Declare one variable having that datatype (not a pointer to it).
(iii) Initialise the variable. (The actual values are your choice. The simplest possible

initialisation code will suffice, but you must completely initialise the variable.)

Choose any valid names, where names have not already been given.

(a) An enum called Breakfast with the possible values eggs, bacon and beans,

having corresponding integer values 0, 5 and 10. [2 marks]

(b) A struct containing (1) a 2 x 2 array of real numbers, and (2) a pointer to a
function that takes no parameters and returns an integer. [3 marks]

(c) A linked list node struct, where the linked list stores pointers to the struct from

part (b). [3 marks]

(d) A union that can store either (1) an integer, (2) a pointer to a constant real
number, or (3) a struct containing both an integer and a pointer to a constant
real number. [3 marks]

Question 2 (9 marks)

Write a C function called sillyRandom, taking two integer pointer parameters and
returning nothing.

The function should:

• Set the first parameter to the sum of both original values.

• Set the second parameter to a random number between the previous sum (as
calculated on the previous call to sillyRandom) and this sum, inclusive. On the
first execution, consider the "previous sum" to be zero.

Note: the current sum may be smaller, larger or equal to the previous sum.

Question 3 appears on the next page

Page 2 of 7

UCP 120

Question 3 (20 marks)

Consider the following code:

double **rimmer[2];

double **kryten[2];

double *cat [3] ;

double lister[] = {4.0, 7.0, 11.0};

rimmer[O] = (double**)malloc(2 * sizeof(double*));

rimmer[1] = (double**)malloc(2 * sizeof(double*));

*kryten = *(rimmer + 1);

kryten[1] = cat;

**rimmer = lister;

(*rimmer) [1] = (*rimmer)[O];

*(rimmer[1])

rimmer [1] [1]

kryten [1] [0]

kryten [1] [1]

rimmer [1] [1] [0]

kryten [0] [1] [1]

Based on this:

lister + 1;

(double*)malloc(3 * sizeof(double));

&rimmer [1] [1] [0] ;

rimmer [1] [1] + (int) (***rimmer * 0. 5) ;

kryten [0] [0] [1] ;

rimmer [0] [0] [1] ;

Semester 2, 2013

(a) Draw a diagram showing all the pointer relationships created. [15 marks]

(b) Show the contents of all non-pointer values at the end. Indicate any that are left

uninitialised. [5 marks]

Question 4 (20 marks)

The following function (on the next page) controls the floodgates for a dam (i.e. doors
that are opened to release water from the lake behind the dam).

If the water level in the lake is too high, or if the level will soon become too high
based on forecast rainfall, the dam's floodgates should be opened to lower the level.

The function imports the number of floodgates, and a pointer to a Dam struct that
stores information on the dam. It calls other functions to help decide how many
floodgates need to be opened.

You believe the operateFloodgates function itself is working. However, you suspect
that the functions it calls may have defects.

Question 4 continues on the next page

Page 3 of 7

UCP 120

1 l void operateFloodgates(int nGates, Dam *theDam)

2 {
3

4

5

6

int *forecast;

int day, nDays, gate, nOpenGatesNeeded;

double waterLevel = damLevel(theDam);

7 forecast = getRainForecast(&nDays);

8 for(day = 0; day < nDays; day++)

9 {

Semester 2, 2013

10 waterLevel += calcWaterintake(theDam, forecast[day]);

11 }
12 free(forecast);

13 print f (!'Forecast water level = %lf\n", waterLevel);

14

15 nOpenGatesNeeded = calcOpenGatesNeeded(theDam, waterLevel);

16 if(nOpenGatesNeeded > nGates)

17 {
18 nDpenGatesNeeded = nGates;

19 printf("Catastrophe imminent. Enact evacuation procedures.\n");

20 }
21

22 for(gate = 0; gate < nOpenGatesNeeded; gate++)

23 {
24 openGate(theDam, gate);

25 }
26 }

For each situation below:

(i) Give two plausible hypotheses for what might be wrong (in the code not shown).
(ii) How do the hypotheses fit the observations?

(iii) What debugging steps (e.g. breakpoints, monitoring of particular variables) will
help narrow down the problem?

(iv) How will you know which hypothesis is correct (or more likely to be correct)?

State any relevant (and realistic) assumptions you make about the code not shown.

(a) The function outputs the correct forecast water level, but never opens any gates,
even when the level requires it. [5 marks]

(b) The forecast water level output by the function is always exactly the current
level, regardless of any rain forecast. [5 marks]

(c) The function segfaults without printing anything. [5 marks].

(d) If the forecast is for no rain, the function works correctly. If rain is forecast, the
function segfaults after reporting the correct forecast water level. [5 marks]

Question 5 appears on the next page

Page 4 of 7

UCP 120 Semester 2, 2013

Question 5 (40 marks)

For this question, refer to the following standard C function prototypes:

FILE *fopen(const char *path, const char *mode);

int fclose(FILE *fp);

int fscanf(FILE *stream, const char *format, ...);

char *fgets(char *s, int size, FILE *stream);

int feof(FILE *stream);

int strcmp(const char *s1, const char *s2);

char *strcpy(char *dest, const char *src);

(a) Declare suitable C datatypes to represent each of the following sets of informa­
tion (as you would do in a header file):

(i) A record of land use over an area, including (1) the number of people living
there, and (2) the type of land use: urban, agricultural or wilderness, as a
single character. [2 marks]

(ii) A 2D rectangle, consisting of an integer width and length. [2 marks]

(iii) A collection of land-use records. This contains:

• A description, up to 127 characters.

• A date- a sequence of 8 digits in string form.

• A 2D grid of the datatype described in part (i). The grid can have any
width and length.

• The width and length in metres of the grid cells (i.e. each plot of land

represented by the datatype in part (i)). All grid cells have the same
width and length.

Use the datatypes from part (i) and (ii) where applicable.

[4 marks]

Question 5 continues on the next page

Page 5 of 7

UCP 120 Semester 2, 2013

(b) Write a C function called loadLand to read a collection of land-use data from a
text file.

The first four lines of the file contain the following:

Line 1: The description of the data.
Line 2: The date of the data.
Line 3: The width and length of each grid cell, in metres, separated by "x" (e.g.

"150x200").
Line 4: The width and length of the whole grid, in the same format. We'll call

these values Wand L. (W x L gives the total number of grid cells.)

The subsequent lines contain the land use information itself. There are L lines,
each containing W land use records, separated by a space.

Each record consists of an integer- the number of people- followed immedi­
ately by a "U" (for urban), "A" (agricultural) or "W" (wilderness). For example,
"500U" indicates 500 people in an urban environment.

Here's an example file:

A small town

20130510

200x200

5x4

OW 3A SA 4A OW

OW 4A 300U 20A 1A

1W 30A 500U 100U 10A

OW 2W 150U 50U 15A

Your function should:

• Take in a filename parameter.
• Read the file, according to the above specifications.
• Dynamically allocate the structures you designed in part (a).
• Store the file data in these structures.
• Return a pointer to the main structure from part (a) (iii).

If the file cannot be opened, your function must return NULL. An error message
is not required. If the file can be opened, you may assume that it definitely
conforms to the specification.

[17 marks]

Question 5 continues on the next page

Page 6 of 7

UCP 120

(c) Write a C function called analyseLand, which:

• Imports:

Semester 2, 2013

- A pointer to the main struct from part (a)(iii) (the same type exported
by the loadLand function).

- A pointer to a real number, called popDen si ty.

- A pointer to a character, called urban.

• Returns nothing.

• Calculates the average population density - the total number of people
divided by the total land area (across all grid cells). This should be exported
via the popDensi ty parameter. (Note: unit conversion is not required.)

• Determines the number of urban grid cells, to be exported via the urban

parameter.

[10 marks]

(d) Write a main function that accepts (and requires) one filename as a command­
line parameter.

Your main should:

• Use the function loadLand from part (b) to read the input file.

• Use the function analyseLand from part (c) to calculate population density
and urban land usage.

• Output the results, or (if required) any error messages.

• Perform all necessary cleaning up.

[5 marks]

- End of Examination Paper -

Page 7 of 7

